SHEAR DOWEL HED

Expansion joint dowelling in concrete structural elements

Forward Constructing.
OUR CONVICTION: FORWARD CONSTRUCTING.

Not just to reflect the current state of building technology, but always to be a decisive step ahead – this is our promise. This is why we constantly achieve pioneering work in all product areas. Our employees consistently use their extensive practical experience and creativity to benefit our customers. Through regular collaborative dialogue with our target groups, we develop today the products which are needed tomorrow. With our dynamics we set consistently milestones in building technology – yesterday, today and tomorrow. This is what we mean by Forward Constructing.
CONTENT

04 Shear dowel HED
Expansion joint dowelling in concrete structural elements

05 Types and dimensions

06 Measurements

09 Fire protection

10 Installation instructions

12 Service & Contact
We are always there for you. We will be wherever you are.
SHEAR DOWEL HED

THE PRODUCT
Due to the use of these HED type shear dowels, dowelling applications on expansion joints can be solved simply and reliably even where there are varying shear forces. It guarantees a displacement of the structural element in the longitudinal axis of the rod up to a joint width of 40 mm. The shear dowels are available in steel grade S 355 galvanized or in stainless steel with material number 1.4571 / 1.4362 (corrosion-protection class 3). All types are available with a special fire protection sleeve for classification according to F90.

FEATURES
▪ Prevents component displacement in the area of the joint
▪ Simple, precise-fit assembly using shear dowel sleeves on the shuttering. A rip-proof film protects the sleeve from ingress of concrete
▪ There is no requirement to drill through the shuttering or supplementary drilling of the concrete

APPLICATION AREA
Single type HED shear dowels are used wherever shear forces are to be transferred through structural joints, e.g. expansion joints between concrete slabs, in floors and walls, for joints between supports and walls or between balconies and floors.
TYPES AND DIMENSIONS

TYPES

SHEAR DOWEL HED-S + GS SLEEVES
- Motion in the longitudinal direction
- Transmission of transverse forces vertically and parallel to the joint
- Sliding sleeve and dowel made of stainless steel

SHEAR DOWEL HED-S + GSQ SLEEVES
- Motion in the longitudinal and transverse direction
- Transmission of transverse forces vertically to the joint
- Sliding sleeve and dowel made of stainless steel

SHEAR DOWEL HED-S + GK SLEEVES
- Motion in the longitudinal direction
- Transmission of transverse forces vertically and parallel to the joint
- Sliding sleeve made of plastic, dowel made of S 355 galvanized or stainless steel

SHEAR DOWEL HED-P
- Motion in the longitudinal direction
- Transmission of transverse forces vertically and parallel to the joint
- With plasticized spring element
- Dowel made of S 355 galvanized or stainless steel

DIMENSIONS

<table>
<thead>
<tr>
<th>Dowel type</th>
<th>Dowel element</th>
<th>Sleeves GS, GK</th>
<th>Sleeves GSQ</th>
<th>Max transverse displacement y [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HED-S</td>
<td>Dowel Ø [mm]</td>
<td>Sleeve length l_u [mm]</td>
<td>Nail plate B/H [mm]</td>
<td>Sleeve length l_H [mm]</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>160</td>
<td>70/70</td>
<td>180</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>160</td>
<td>70/70</td>
<td>180</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>160</td>
<td>70/70</td>
<td>180</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>185</td>
<td>80/80</td>
<td>205</td>
</tr>
</tbody>
</table>
SHEAR DOWEL HED

MEASUREMENTS

REINFORCED CONCRETE

The decisive resistance for dimensioning is the lesser value of the steel bearing capacity and concrete bearing capacity:

\[V_{Rd} = \min (V_{Rd,S}; V_{Rd,C}) \]

The decisive resistance for the concrete bearing capacity is the lesser value of the verifications of concrete edge break and punching shear:

\[V_{Rd,C} = \min (V_{Rd,ce}; V_{Rd,ct}) \]

- \(V_{Rd,S} \): Dimensioning resistance of the steel bearing capacity taking into account the friction forces \((f_\mu = 0,9) \)
- \(V_{Rd,C} \): Dimensioning resistance of the concrete bearing capacity
- \(V_{Rd,ce} \): Dimensioning resistance of the concrete edge break according to the expert opinion of Prof. Eligehausen 2004
- \(V_{Rd,ct} \): Dimensioning resistance to punching shear in accordance with EC2

Dimensioning Resistances: Steel Bearing Capacity

\[V_{Rd,S} = f_\mu \times 1,25 \times (f_y / \gamma_{MS}) \times W / (z + \varnothing/2) \]

Dimensioning Resistances: Concrete Bearing Capacity

- \(f_\mu \): 0,9 reduction factor for friction
- \(f_y \): Yield point dowel [N/mm²]
- \(z \): Joint width [mm]
- \(\varnothing \): Dowel diameter [mm]
- \(W \): Moment of resistance [mm³]
- \(\gamma_{MS} \): Material safety factor for steel
MEASUREMENTS

DIMENSIONING RESISTANCES FOR CONCRETE AND STEEL BEARING CAPACITY IN REINFORCED CONCRETE

<table>
<thead>
<tr>
<th>Dowel type</th>
<th>Dimensioning resistances for steel bearing capacity $V_{rd,S}$ [kN] taking the friction for the joint width into account</th>
<th>Component thickness h [mm]</th>
<th>Rated resistances concrete load capacity* $V_{rd,C}$ [kN] for C20/25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$z = 0$-10 mm $z = 11$-20 mm $z = 21$-30 mm $z = 31$-40 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>14.3 9.5 7.1 5.7</td>
<td>≥ 160 ≥ 180</td>
<td>13.7 14.3**</td>
</tr>
<tr>
<td>22</td>
<td>18.1 12.2 9.3 7.4</td>
<td>≥ 180 ≥ 200 ≥ 220 ≥ 240</td>
<td>14.2 15.8 17.2 18.0 18.1**</td>
</tr>
<tr>
<td>25</td>
<td>24.8 17.1 13.1 10.6</td>
<td>≥ 180 ≥ 200 ≥ 220 ≥ 240 ≥ 260</td>
<td>20.5 22.4 23.6 24.6 24.8**</td>
</tr>
<tr>
<td>30</td>
<td>38.5 27.5 21.4 17.5</td>
<td>≥ 220 ≥ 240 ≥ 260 ≥ 300 ≥ 320</td>
<td>29.2 31.5 33.7 35.8 38.0 38.5**</td>
</tr>
</tbody>
</table>

* taking on-site reinforcement into account
** for these values the dimensioning resistance of the steel bearing capacity is reached taking the friction forces ($f_\mu = 0.9$) into account

ON-SITE REINFORCEMENT AND MINIMUM SPACINGS

![Diagram showing on-site reinforcement and minimum spacings](image)

<table>
<thead>
<tr>
<th>Dowel type</th>
<th>Required dowel spacing e_{min} [mm]</th>
<th>Distance from edge a_i [mm]</th>
<th>Construction element thickness h_{min} [mm]</th>
<th>Stirrup spacing I_c [mm]</th>
<th>On-site reinforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>310</td>
<td>155</td>
<td>160</td>
<td>60</td>
<td>2 Ø 10</td>
</tr>
<tr>
<td>22</td>
<td>350</td>
<td>175</td>
<td>160</td>
<td>60</td>
<td>2 Ø 10</td>
</tr>
<tr>
<td>25</td>
<td>410</td>
<td>205</td>
<td>180</td>
<td>70</td>
<td>2 Ø 12</td>
</tr>
<tr>
<td>30</td>
<td>560</td>
<td>280</td>
<td>220</td>
<td>90</td>
<td>2 Ø 14</td>
</tr>
</tbody>
</table>

e_{min} minimum spacing between axes of single dowels
a_i minimum distance from edge
h_{min} minimum construction element thickness
I_c Spacing of the first splice stirrup on the dowel
A_{sx} Splice stirrup
A_{sy} Longitudinal reinforcement
MEASUREMENTS

NON-REINFORCED CONCRETE

The determination of the dimensioning resistances V_{Rd} of the shear dowels HED for the steel and concrete bearing capacity according to Booklet 346, DafStb as follows:

STEEL BEARING CAPACITY

$$V_{Rd,S} = f_{\mu} \times 1.25 \times \left(f_{yk} / \gamma_{MS} \right) \times W / (z + \theta/2)$$

CONCRETE BEARING CAPACITY

$$V_{Rd,C} = 0.4 \times f_{yk} \times \theta^{0.1} / (333 + 12.2 \times z)$$

$$0.4 = (\alpha \times \gamma_{MW}) / 3$$

with:

- f_{μ}: 0.9 reduction factor for friction
- f_{yk}: Yield point Dowel [N/mm²]
- f_{ck}: Characteristic cylinder compressive strength of the concrete [N/mm²]
- z: Joint width [mm]
- θ: Dowel diameter [mm]
- W: Moment of resistance [mm³]
- γ_{MS}: Material safety factor for steel
- α: 0.85 (in consideration with longterm effects on the compressive strength of concrete)
- γ_{MW}: 1,425 (average between permanent, $\gamma_{q} = 1.35$ and varying, $\gamma_{q} = 1.5$ impacts)

DIMENSIONING RESISTANCES IN NON-REINFORCED CONCRETE

<table>
<thead>
<tr>
<th>Dowel type</th>
<th>Concrete quality</th>
<th>Dowel Ø [mm]</th>
<th>Min. construction element thickness h_{min} [mm]</th>
<th>Dimensioning resistances [kN] taking the resistance of the joint width into account</th>
</tr>
</thead>
<tbody>
<tr>
<td>HED-S</td>
<td>≥ C 20/25</td>
<td>20</td>
<td>320</td>
<td>$z = 0-10$ mm: 9.5, $z = 11-20$ mm: 7.1, $z = 21-30$ mm: 5.7, $z = 31-40$ mm: 4.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>HED-P</td>
<td>20</td>
<td>20</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>22</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>480</td>
<td></td>
</tr>
</tbody>
</table>

An edge spacing of $a_{s} \geq 8 \theta$ and a dowel spacing of $e \geq 16 \theta$ referred to the dowel axis must be maintained in all directions.
If there are technical fire protection requirements on the construction elements according to DIN 4102 Part 2, the shear dowels must be installed with fire protection sleeves. In order to meet the classification F90 the unprotected dowel must be fitted with a fire protection sleeve in the joint. In the event of a fire, the fire protection sleeve foams and completely fills the joint.

Joint insulation on site

- Fire protection sleeve

DIMENSIONS OF THE FIRE PROTECTION SLEEVES TYPE BRM & BRMQ

<table>
<thead>
<tr>
<th>Type</th>
<th>Dowel</th>
<th>Sleeve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ø [mm]</td>
<td>b [mm]</td>
</tr>
<tr>
<td>BRM 20</td>
<td>20</td>
<td>122</td>
</tr>
<tr>
<td>BRM 22</td>
<td>22</td>
<td>122</td>
</tr>
<tr>
<td>BRM 25</td>
<td>25</td>
<td>122</td>
</tr>
<tr>
<td>BRM 30</td>
<td>30</td>
<td>122</td>
</tr>
<tr>
<td>BRMQ 20</td>
<td>20</td>
<td>152</td>
</tr>
<tr>
<td>BRMQ 22</td>
<td>22</td>
<td>152</td>
</tr>
<tr>
<td>BRMQ 25</td>
<td>25</td>
<td>152</td>
</tr>
<tr>
<td>BRMQ 30</td>
<td>30</td>
<td>152</td>
</tr>
</tbody>
</table>

Ordering example: BRM-25-20 for shear dowel HED 25 Nominal joint 20 mm
INSTALLATION INSTRUCTIONS SHEAR DOWEL HED-S + GK/GS SHEAR DOWEL SLEEVE*

- Nail the sleeve on to the shuttering
- Do NOT remove protective sticker
- Arrange the reinforcement in accordance with the reinforcement plan
- Concrete in the first section
- Strip the shuttering
- Remove protective sticker
- Apply the joint material
- Cut an aperture in the joint material
- Attach the fire protection sleeve
- Push the dowel into the sleeve
- Arrange the reinforcement in accordance with the reinforcement plan
- Concrete in the second section

* Fitting with GSQ sleeve has to be effected correspondingly. It should be ensured that the GSQ sleeve is fit horizontally.
A SERVICE FOR BUILDING THE FUTURE:
WE ARE ALWAYS THERE FOR YOU.

You can rely on our excellent service: We accompany you through every phase of the project – either over the phone, online or in person, directly at your site. As a true partner, we place special value on offering our customers added value – allow yourself to be convinced by our comprehensive range of services.

READY TO GO:
OUR TENDER DOCUMENTS.
Our ready-made tender documents can be quickly and easily embedded in your tender program, e.g. with the tender managers at www.ausschreiben.de or www.heinze.de

EVERYTHING ONLINE:
OUR DOWNLOAD CENTRE.
All brochures, test reports, approvals, our latest price list and much more are available for download at www.h-bau.de/download

FOR PLANNING AND APPLICATION:
OUR VIDEOS AND SOFTWARE.
In addition to our installation and reference films, we also provide you with various software solutions, such as calculation programs, free of charge on our website.

HOTLINES

Individual support in the planning and implementation of projects:

APPLICATION TECHNOLOGY
Hotline: +49 7742 9215-300
Email: technik@h-bau.de

DISTRIBUTION GERMANY
Hotline: +49 7742 9215-200
Email: vertrieb@h-bau.de

Answers to any questions regarding delivery times, shipping, sales prices and the complete processing of your orders:
INDIVIDUAL: OUR SPECIAL CONSTRUCTIONS.
Were you unable to find what you were looking for in our wide range of products and services? Our engineers and applications engineers will develop individual product solutions on request to meet your needs.

FROM PERSON TO PERSON: OUR NETWORK OF CONSULTANTS.
Get the answers to your technical questions face-to-face at your site: Our consultant engineers will be happy to come to your site.

CUTTING EDGE: OUR NEWSLETTER.
Subscribe to our newsletter and you will always be kept up-to-date: Find out more about our product innovations, trade shows and current trends in the sector.

Answers to any questions regarding delivery times, shipping, sales prices and the complete processing of your orders at an international level:

We will be happy to send you our technical brochures and planning documents:

DISTRIBUTION INTERNATIONAL
Hotline: +49 7742 9215-250
Email: export@h-bau.de

HEAD OFFICE
Hotline: +49 7742 9215-0
Email: info@h-bau.de
CONTACTS TO HELP BUILD THE FUTURE:
WE WILL BE WHEREVER YOU ARE.

Thanks to our global sales network, expert specialist advisors are available to you on a national level and on an international level. If no contact partner is listed for your country, contact our Head Office in Klettgau – we will be happy to provide you with further assistance.
Disclaimer

1. This work and all its parts are protected by copyright law. The use of this work shall not be permitted without the agreement of H-BAU Technik GmbH.

2. All texts and diagrams in this printed product have been developed and compiled with the utmost care and serve to provide preliminary information. Nevertheless, errors cannot be completely excluded. The publisher shall assume no liability, irrespective of the legal grounds for this. Previous documents shall become invalid with the issue of this document.
Forward Constructing.